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Gravity current flow over obstacles 
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When a gravity current meets an obstacle a proportion of the flow may continue over 
the obstacle while the rest is reflected back as a hydraulic jump. There are many 
examples of this type of flow, both in the natural and man-made environment (e.g. sea 
breezes meeting hills, dense gas and liquid releases meeting containment walls). Two- 
dimensional currents and obstacles, where the reflected jump is in the opposite 
direction to the incoming current, are examined by laboratory experiment and 
theoretical analysis. The investigation concentrates on the case of no net flow, so that 
there is a return flow in the (finite depth) upper layer. The theoretical analysis is based 
on shallow-water theory. Both a rigid lid and a free surface condition for the top of the 
upper layer are considered. The flow may be divided into several regions: the inflow 
conditions, the region around the hydraulic jump, the flow at the obstacle and the flow 
downstream of the obstacle. Both theoretical and empirical inflow conditions are 
examined; the jump conditions are based on assuming that the energy dissipation is 
confined to the lower layer; and the flow over the obstacle is described by hydraulic 
control theory. The predictions for the proportion of the flow that continues over the 
obstacle, the speed of the reflected jump and the depth of the reflected flow are 
compared with the laboratory experiments, and give reasonable agreement. A 
shallower upper layer (which must result in a faster return velocity in the upper layer) 
is found to have a significant effect, both on the initial incoming gravity current and 
on the proportion of the flow that continues over the obstacle. 

1. Introduction 
Gravity (or density) currents are buoyancy-driven flows, and may be of relatively 

dense fluid along a lower boundary or light fluid on an upper boundary or surface. 
They occur both in the natural environment and in man-made situations. They include 
sea breezes, estuary outflows, turbidity currents and accidental dense gas releases. This 
type of flow is reviewed (and many further examples given) by Simpson (1982, 1987). 

When a gravity current meets an obstacle some of the fluid may flow over or around 
the obstacle while a hydraulic jump will be reflected. (Moving hydraulic jumps are 
commonly referred to as ‘bores’.) For general obstacles, or for simple ridges or slopes 
at some angle to the oncoming flow, the reflected jump will be complicated and three- 
dimensional even if the oncoming flow was two-dimensional. The relation between the 
angles of the barrier to the oncoming current and to the reflected jump are of some 
interest as they have implications for estuarine mixing and sediment reworking in the 
oceanographic context (Thorpe, Hall & Hunt 1983; Kneller et al. 1991; Edwards 
1993). Here we limit ourselves to the consideration of two-dimensional flows, such as 
a sea breeze meeting a ridge parallel to the front, so that the reflected jump will be in 
the opposite direction to the oncoming flow. When sea breezes occur there is often a 
low inversion, which effectively puts a ‘lid’ on the circulation. The presence of a return 
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FIGURE 1. Basic gravity current flow in a channel of finite depth. 
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FIGURE 2. Flow after the gravity current has been partially reflected by the obstacle, with the 

upper boundary being (a)  a free surface, (b) a rigid lid. 

flow is important in the development of a sharp density front between the air over the 
sea and that over the land. Once the front has formed it begins to move inland as a 
gravity current, generating the sea breeze (see, for example, Simpson 1987). 

Rottman et al. (1985) studied a two-dimensional gravity current meeting an obstacle. 
They considered the case where the upper layer of ambient fluid is infinitely deep, and 
stationary (and thus remains stationary), and some important details of the flow over 
the barrier were ignored. Here we first consider this case (with a passive upper layer) 
but with a more accurate treatment of the flow over the obstacle. Then we allow for 
an active finite upper layer, with a return flow in this layer to balance the flux in the 
gravity current (see figure 1). 

On reaching the obstacle the dense fluid flows up and (possibly) over the obstacle 
with a hydraulic jump reflected back upstream. The dense fluid in the region between 
the jump and the obstacle is still flowing towards the obstacle, but with a smaller speed 
than in the original flow. It is assumed that the hydraulic jump moves at a steady speed 
upstream and there is a steady flux of dense fluid over the obstacle. The flow is sketched 
in figure 2, with the notation used in this paper marked on this figure. The flow is 
divided into several regions, which we denote by number (0 to 3), and into the two 
layers, which we denote by U (upper) and L (lower). To the left of the reflected 
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hydraulic jump (region 0) we have the inflow conditions: the height and velocity of the 
two layers and the density difference between them. We assume no mixing between the 
two layers so that the density difference is constant. The density difference is denoted 
by Ap = pL-pu and the reduced gravity by g’ = gAp/p,, where g is the acceleration 
due to gravity. Region 1 is the region between the reflected hydraulic jump and the 
obstacle, region 2 the conditions at the obstacle and region 3 the region downstream 
of the obstacle (and downstream of any further hydraulic jump). 

There is a large class of similar flows, with two active layers and a jump upstream 
of the obstacle, differing only in the choice of inflow conditions. However, the only case 
previously considered in detail is that when the velocities in the two layers upstream of 
the jump are equal (i.e. coflowing, with u,,, = u U J .  This models a stratified unsheared 
fluid meeting an obstacle and has been considered by Wood & Simpson (1984), Baines 
(1984) and many others: a thorough review is given by Baines (1987). For our case 
there is a velocity shear and the speed of the flow (relative to the obstacle) is limited 
by the fact that it is generated by a gravity current with no net flow. Despite these 
differences in the inflow conditions, much of the mathematical analysis is very similar. 

Most of the analysis presented here ignores the effects of density differences on the 
inertia (the Boussinesq approximation). Gravity current flows with large density 
differences have been examined by Grobelbauer, Fannebp & Britter (1993). They 
present some interesting laboratory and numerical experiments, though their 
theoretical discussion fails to observe conservation of mass (counter-flowing layers of 
equal depths cannot have different speeds for an incompressible exchange flow, as they 
suggest). 

We analyse first the flow with a passive upper layer (in $2) and then deal with the 
case of an active upper layer, with either a rigid lid or free surface at  the top of the 
upper layer ($3). The experiments are described in $4, and the results of the 
experiments are given and compared with the theoretical predictions in $5 .  Finally, 
there is a discussion in $6, together with a consideration of future work. 

2. Passive upper layer (lglayer flow) 
We consider first the case where the upper layer is infinitely deep and stationary. The 

details of the calculations are not dealt with here since they are essentially the same as 
those for the two-layer cases described below, with the added simplification that the 
upper layer velocity is everywhere zero. The non-dimensional speed of the incoming 
gravity current may be given as a Froude number, Fr,, = uLo/(g’dL,,)l’z. We non- 
dimensionalize the height of the obstacle by the height of the tail of the incoming 
gravity current. From these two input parameters the proportion of the incoming 
current that continues over the obstacle may be calculated (details below) and the 
results are presented in figure 3. 

In practice we do not expect the Froude number to be a variable for this type of flow, 
but a constant. However, for flows which are not two-dimensional (such as radially 
spreading flows) the Froude number may vary and so these results are useful in 
considering more complicated flows. In addition the results are useful in informing the 
discussion of the two-layer flows, since an important effect of an active upper layer is 
to reduce the Froude number of the incoming current, as well as modifying other 
aspects of the flow. The Froude number may be thought of as a measure of the kinetic 
energy of the flow. The results show that the flow is completely blocked by an obstacle 
of approximately twice the height of the incoming gravity current, with a higher 
obstacle needed for higher Froude numbers. 
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FIGURE 3. Contours showing the proportion of the incoming flow that is predicted to continue over 
the obstacle as a function of obstacle height (divided by the height of the gravity current tail) and 
inflow Froude number for a gravity current flowing into an infinitely deep passive ambient fluid 
(lklayer model). 

3. Active upper layer (2- and 2glayer flow) 
It is assumed that the velocity is constant in each layer, and we ignore the effects of 

viscosity (except that hydraulic jumps involve energy loss which is often achieved by 
viscous dissipation). An important consideration is the boundary at the top of the 
upper layer. This may be a rigid lid (2-layer flow) or a free surface (2i-layer flow). In 
the experiments a free surface is used but, for simplicity, we use a rigid lid 
approximation in the calculations. If the density difference between the two layers is 
relatively small we may use the Boussinesq approximation (ignoring the effect of 
density differences on inertial terms) and the changes in the height of the free surface 
will be negligible so that a rigid lid approximation is valid. 

For the free surface case we use 6 to denote the height of the free surface relative to 
its height in region 0 (i.e. defining 6, = 0), while for the rigid lid case 6 denotes the static 
head relative to that in region 0 (so again 6, = 0). The complete nomenclature is given 
in figure 2(a) (free surface) and figure 2(b) (rigid lid). We now consider the conditions 
at various points in the flow for the rigid lid case. 

3.1. Inflow conditions 
Under the Boussinesq approximation and assuming no net flow the Froude number of 
the incoming gravity current depends only upon the ratio of the total depth (Do) to the 
lower layer depth (dLo). Benjamin (1968) derives a theoretical relation between the 
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depth of the channel relative to that of the gravity current (h  = Dn/dLn) and the Froude 
number, 

Frio = [(h - 1) (2h - l ) ] / [h(h  + l)] 
The return flow in the upper layer may be found from the no-net-flow condition, 

u L o  d L o  + uun dun = 0- (1 b)  
We use these relations as the inflow conditions. As an alternative we also use an 
empirically determined Froude number equation (see $ 5 )  in place of (1 a),  and compare 
the results from these two different inflow conditions. For cases where there is a net 
flow, different inflow conditions must, of course, be used. The flow at a position in the 
gravity current tail is not affected by the presence of the obstacle until that position is 
overrun by the reflected hydraulic jump. Thus the flow in region 0 is that of the 
undisturbed gravity current tail. 

3.2. Jump conditions 
The transition between region 0 and region 1 is achieved by means of a hydraulic jump. 
Several previous workers have considered this problem and used slightly different 
relations between the conditions upstream and downstream of the jump. The 
differences amount to where to site the energy dissipation that inevitably accompanies 
the jump. Here we follow Wood & Simpson (1984) and confine the energy dissipation 
entirely to the lower layer. This has the merits of agreeing with experimental 
observations (there are much greater energy losses in the expanding layer than in the 
contracting layer), of ensuring that there is no energy gain in the upper layer (as occurs 
in some theories, e.g. Yih & Guha 1955) and of making the calculations simpler (since 
we can now use Bernoulli’s equation on a streamline in the upper layer with no need 
to allow for a loss of head across the jump). 

The assumption that the adjustment is achieved by means of a jump is based on the 
observations of the flow. However, another possibility is that the adjustment is 
achieved by a rarefaction or combination of jump and rarefaction. (A rarefaction in 
this context means a gradual change in layer depth with the shape of the interface 
changing with time.) This type of adjustment is observed in ‘standard’ two-layer and 
obstacle experiments (those with no shear upstream of the adjustment) under some 
conditions (Baines 1984). We will show that a combination of bore and rarefaction is 
predicted by our theory for some initial conditions, though this is less important for the 
gravity current case than the standard case, and we do not give a detailed analysis (see 
$5.3). For the present we assume a simple jump. 

It is convenient to change to a reference frame moving with the jump, which is 
assumed to have constant velocity U (with U negative, since the jump is moving 
upstream). The velocities in the new frame are denoted by zi, so that 

uLn = uLo- U ,  etc. (2) 

0.m dLo  = v L i  dLi and uun duo = vui  du i ,  (3a, 6) 

(4) 

There must be conservation of mass across the jump, 

and for the rigid lid case the total depth is constant, 

dL1 + d,, = D, = D,. 

Conservation of momentum across the jump gives 

~ ~ ~ g ~ ~ + a < p L - ~ u ) g d 2 , o + ~ u V 9 o d u n + P L z i i ~ d L n  

= Pu g 4  Dl + i P U  gD: + $CoL -Pu)g& + P U  4 1  471 +PL 4 1  4 1 .  ( 5 )  
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We can use Bernoulli’s theorem in the upper layer, 
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;& = ;l& +gal. (6) 

For given inflow conditions, this system is effectively the five equations (3)-(6) in six 
unknowns: the velocity and depth of the upper and lower layers to the right of the 
hydraulic jump, the velocity of the reflected jump and the value of 6,. To close the 
system we need a downstream condition. 

3.3. Obstacle 
It is assumed that the variations in the topography are gradual so that there is a gradual 
variation in the height of the interface between the two layers as the top of the obstacle 
is approached. (The variation in the height of the interface was ignored by Rottman 
et al. 1985, leading to overestimates of the flux over the obstacle and underestimates 
of the depth of the reflected flow.) The height of the top of the obstacle is denoted by 
H,  and the values of variables at the point are denoted by the subscript 2. 

Conservation of mass gives 

uLi dLi = uLz dL, and uui dui = uuz duz, ( 7 4  b)  

(8) 

while for the rigid lid case the total depth is constant, 

dL2+dU2 = D, = Do. 
Bernoulli’s theorem can be used in both layers in the transition from region 1 to region 
2, 

au;, +g6, = +g&, (9 4 
and ;PLu:l-+PUu;l +gApdL,, = ~PLU:z-~PuuU2uz+gAP(dLz+H). (9 b)  

Note that for (2)-(9) we have only made assumptions about the general form of the 
flow, and have not imposed any conditions relating to the inflow (such as no net flow). 
We now consider the particular case of no net flow under the Boussinesq approximation 
(valid when there is a small relative density difference between the two layers). 

Two-layer flows that are ‘controlled’ at a constriction, as this flow is, have been 
studied by Dalziel (1991) and Farmer & Armi (1986). For controlled flows, the 
maximal flow rate occurs when the composite Froude number at the constriction is 1. 
Under the Boussinesq approximation this gives 

(10) F& + Fr& = 1, 

where Fr,, = uLz/(g’dL,)l’z and Fruz = uuz/(g’du,)l/z are the layer Froude numbers, 
and the no-net-flow condition is 

3.4. Boussinesq rigid lid solution 
The system of equations (1)-( 1 1) is solved by an iterative algorithm. The iteration is 
based on gradually increasing the depth of the lower layer to the right of the hydraulic 
jump (dLl). Given the inflow conditions from (1 a, b )  and a guess for dLl, the jump 
conditions (2)-(6), are used to find the values of the variables in region 1. Equations 
(8)-( 11) are then used to find the flow over the obstacle, and the result checked against 
the continuity conditions (7). Based on the mismatch at this last step, a better guess for 
dL1 is made. 

This algorithm may be interpreted as follows. Increasing the depth of the lower layer 
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FIGURE 4. Contours of the proportion of the incoming flux that continues over the obstacle, as a 
function of the obstacle height and the height of the incoming current relative to the total channel 
depth (2-layer model), using the Froude number predicted from (1 a). 

to the right of the hydraulic jump increases the magnitude of both the ‘reflected’ flux 
(the change in the lower-layer flux either side of the jump) and the ‘transmitted’ flux 
(the flux over the obstacle). When the sum of these fluxes matches the input flux, we 
have found a solution. 

In figure 4 the proportion of the input flux that continues over the obstacle is plotted 
as a function of obstacle height and the reciprocal of the relative depth ( l / h ,  which is 
the proportion of the channel depth occupied by the gravity current). Note that the 
Froude number of the incoming gravity current depends on the depth of the incoming 
gravity current (relative to the total depth) through (1 a) ,  with a lower lid giving lower 
Froude numbers. A different empirically determined relation is used in place of (1 a)  for 
further calculations (see § 5 ) ,  but it maintains the link between a lower lid and a lower 
Froude number. 

3.5. Free surface and non-Boussinesq eflects 
Next we consider the case where the top of the upper layer is bounded by a free surface. 
The sum of the layer depths can now vary, and (4) and (8) must be replaced by 

(12) 
and (13) 
The vertical integration limits in the calculation of the flow force balance to the right 
of the hydraulic jump also change, so that the right-hand side of (5) becomes 

(14) 

dL1 + dul = D, = Do + 6,, 

dL2 + du, = D, = Do + 6,. 

i P  u gD:: + f C . L  - P u )  g e l  + P u 4 1  du 1 + P L  V L l  dL 1’ 
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The solution of the free surface equations is more complicated because the change in 
free surface height appears throughout the equations via the values of du and dL, 
whereas the analogous changes in static head in the rigid lid equations do not. We have 
not solved the free surface equations but a possible solution algorithm is to solve the 
rigid lid equations, then use the values of the static head (which will approximate the 
free surface heights) to modify the height of the channel for the next iteration. 

As was remarked above, if the Boussinesq approximation is valid for the free surface 
flow, then the changes in the free surface height will be small and the rigid lid solution 
will give a good approximation. Thus if it is necessary to use the free surface solution 
it will also be necessary to use the non-Boussinesq version of the hydraulic condition, 
and thus (for example) replace (10) with (Armi 1986; Lawrence 1990), 

Fri2 + Frb2 + ( A p / p L )  Fri2 Frb2 = 1. 

For non-Boussinesq flow with a rigid lid the condition is 

If the boundary at the top of the upper layer is an interface with a third passive fluid 
layer (of density pp, say), then the flow will be very similar to the free surface flow. It 
is only necessary to replace the gravitational acceleration in (6) and (9a) with a reduced 
gravity based on the densities of the upper active layer and the passive layer. If the 
density difference between the two active layers is much smaller than that between the 
passive layer and the upper active layer then the free surface will be close to horizontal 
and so the rigid lid approximation will be valid. Further, the Boussinesq approximation 
must also be valid since if ('pL-pu) is much less than ('pu-pp) then it certainly must 
be much less than pu. The converse is not true, however. If all three layers have similar 
densities then the Boussinesq approximation will be valid (e.g. using (10) rather than 
(15a) for flow over the obstacle) but the rigid lid approximation will not be. 

The differences between the rigid lid and free surface flows will generally be small, 
especially with regard to the proportion of incoming flux that continues over the 
obstacle since this seems to depend mainly on the Froude number of the incoming 
gravity current. 

4. Experiments 
The experiments were conducted in a clear Perspex tank, approximately 30 cm deep, 

13 cm wide and 120 cm long. One third of the tank was partially blocked off by a fixed 
barrier, leaving a rectangular opening at the bottom of this barrier spanning the full 
width of the tank. This opening was covered by a sliding barrier. The apparatus is 
shown in figure 5.  For each experiment the tank is filled with fresh tap water. The 
opening is then covered by the sliding barrier and salt and dye dissolved in the water 
in the smaller section. When the sliding barrier is removed there is an exchange flow 
through the opening. A turbulent plume of fresh water rises into the smaller section 
while a gravity current flows into the larger section. Using this apparatus it is possible 
to generate steady gravity currents with a range of relative depths. 

The obstacles used in this study were ridges running the full width of the tank, of 
approximately triangular cross-section (with slightly rounded tops). The flow was 
filmed using a video camera and measurements made using an image processing system 
(DigImage). The spatial resolution from this system was approximately 0.1 cm 
(depending on the size of the field of view), and the temporal resolution up to 25 Hz. 
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FIGURE 5 .  A vertical section through the apparatus. When the sliding barrier is removed a 
rectangular opening is left at the bottom of the fixed barrier. 

Mixing between the two layers of fluid, leading to an indistinct interface, introduced 
more significant (and harder to quantify) errors. 

The height of the opening was 4.8 cm, and the range for total water depths was from 
4.8 to 25.5 cm. This gave relative depths h in the range 2 to 18 (the height of gravity 
current is generally less than half that of the opening, and also varies with h) .  The 
relative density difference between the fresh and salt water was in the range 2 %  to 
lo%, giving gravity current velocities of between 4 and 12 cm s-l. The Reynolds 
numbers for the flows were therefore always greater than 500 (and usually much larger) 
so that viscous effects were not significant. 

Gravity current fluxes were estimated by multiplying the speed of advance of the 
gravity current by the height of the tail of the current (behind the raised head). The 
‘reflected’ flux was estimated by multiplying the speed of the reflected jump by the 
difference in the depths of the lower layer (dLl - dLo). The difference between the input 
flux and the sum of the reflected and transmitted fluxes gives an estimate of the errors 
in these flux calculations. 

5. Results 
5.1. General observations 

The incoming gravity current has the standard form, with a slightly raised ‘nose’ (due 
to viscous effects on the lower boundary), a head region somewhat higher than the 
following tail and some mixing at the rear of the head. When the gravity current 
reaches the obstacle it flows up it, decelerating as it rises. For cases where there is total 
reflection, the depth of the reflected flow is between two and three times that of the 
incoming current. However, a small ‘splash’ continues up the obstacle, reaching a 
height of between four and five times that of the incoming current. For some obstacle 
heights only this finite-volume splash continued over the obstacle, with the rest of the 
flow reflected. In all the experiments the reflected hydraulic jump was observed to be 
an undular bore: a smooth change in depth with a train of waves to the right of the 
jump. Wood & Simpson (1984) found that undular bores occur where the change in 
depth is by a factor of approximately 2.5 or less, with a turbulent bore for larger depth 
changes. The smooth transition of the lower-layer depth, rather than a sharp jump, the 
presence of some mixed fluid above the lower layer to the left of the jump and the 
developing wavetrain to the right of the jump made determining the precise position 
of the jump difficult. For the results given below for the jump velocity the position of 
the jump was taken to be the point where the lower-layer depth was halfway between 
its extreme values. 



48 G .  F. Lane-Serf, L .  M .  Beal and T. D. Hadfield 

Obstacle 

FIGURE 6. A typical image of the flow, showing the reflected jump and the flow continuing over 
the obstacle. The image was created by digitizing a video picture. 
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FIGURE 7. Experimental results for the Froude number of the incoming gravity current (triangles, 
FrLo) and the ratio of the total depth to the flow depth (squares, h = D,/d,,) as they vary with the 
total depth of water in the tank divided by the height of the opening, D , / Z .  The lines are the power- 
law fits used to give equations (160) and (16b). 

Once the initial splash has decayed and the reflected jump has moved away from the 
obstacle a steady flow is observed in the region of the obstacle. The interface between 
the fluid layers becomes lower as it approaches the obstacle, and the lower layer flows 
down the downstream side of the obstacle in a fast shallow layer (similar to single layer 
flow over a weir). Downstream of the obstacle there is a hydraulic jump, followed by 
a gravity current flow similar to (but smaller than) the original incoming current. The 
small size of this outflowing current, and the mixing that occurs at the hydraulic jump 
as well as at the gravity current head, make precise measurements of the outflow 
difficult. A typical example of the observed flow is given in figure 6. 

5.2. Quantitative results 

The depth (dLo) and the Froude number (FrLo) of the incoming gravity current varied 
with the total depth of water in the tank (Do), as shown in figure 7. From these results 
we can derive empirical relations between the Froude number and the relative depth 

FrLo = (0.56 k 0.02) h(0.22f0.04), 

and between the relative depth and the total depth (and the size of the opening, Z ) ,  

( 16b) h = (1.77 f0.05) (D,/Z)(1.26'o.06). 
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The inflow conditions described by (16a) differ significantly from the theoretical 
relation given earlier in (la), and so we replace (la) by (16a) in the calculations 
described below. (In fact, since Do and Z can be measured more accurately than dLo, 
the value for h predicted by (16b) is used when examining the experimental results.) 
Equations (16a, b) are simple power laws fitted to the experimental data, and are only 
valid for the range of relative depths investigated here (i.e. h less than approximately 

The inflow originates from a controlled doorway flow for which the flux per unit 
15). 

width may be written as 

with k varying between 0.25 for Do = Z to 0.21 for Do significantly greater than Z 
(Dalziel & Lane-Serff 1991). The present results summarized by (16a) and (16b) give 
(for the range 1 < Do/Z < 5.5) 

Q = kZ3/2(g’)1/2, (174 

k = 0.27(D,/Z)-0.11, (17b) 

which is slightly (but not significantly) larger than expected. 
The predicted proportion of the input flux that continues over the obstacle, based on 

the new inflow condition (16a), is given in figure 8(a) (compare with figure 4). 
Predictions for the velocity of the reflected jump and the depth of the lower layer to the 
right of the jump are given in figures 8(b, c). Given the range of validity of (16a), which 
gives an unbounded Froude number with increasing h, the region on the plots below 
l/h = 0.07 must be regarded as unreliable. 

The predicted results are compared with the observed experimental results in figure 
8(d-f). There is good agreement between the predicted and observed values for the 
proportion of the inflow flux that continues over the obstacle and for the ratio of the 
lower-layer depths either side of the jump. However, the measured speed of the 
reflected jump is generally somewhat lower than that predicted. This may be due to 
inaccurate measurements of the jump velocity as the jump changed in form as it 
travelled away from the obstacle. Also the transport of fluid in th.:: observed undular 
bores is more complicated than in the simple sharp jumps used in the model. 

5.3. Rarefactions 
In our theory we assumed that the adjustment upstream of the obstacle was achieved 
by means of a jump. However, if a smaller jump than that predicted by the theory can 
travel faster than the predicted jump then this is the jump that will be observed, with 
a smooth change in interface level up to its final height behind the jump. The shape of 
the interface behind the jump will change with time, as the jump moves faster than the 
point where the smooth variation reaches its final level. This type of adjustment has 
been predicted and observed in standard two-layer flow (see Baines 1984, which also 
gives further details of the necessary analysis). The region of parameter space where 
such behaviour would be expected in the present case is marked on figure 8 (a-c). The 
slowest moving deepest jump predicted by the simple theory occurs when the flow is 
totally blocked: the speed and depth for the totally blocked case is compared with the 
fastest jump in figure 9. As can be seen from that figure, the discrepancy between the 
two speeds is not great, reaching its peak for an incoming gravity current that 
originally occupies half the channel depth. Only two experiments had parameters in the 
appropriate ranges (those with predicted bore velocities faster than the incoming 
current, i.e. less than - 1 in non-dimensional units) and no clear evidence of rarefaction 
could be seen. However, this area is clearly worthy of further investigation, though 
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FIGURE 9. The velocity (a) and depth (b)  of the fastest moving reflected bore (bold lines) and of the 
totally blocked flow (thin lines) as functions of the proportion of the channel depth occupied by the 
incoming gravity current. 

there is likely to be only a marginal effect on the proportion of the flow that continues 
over the obstacle. 

The fact that rarefactions are less important in the gravity current case than in the 
standard case points up an important difference between the two. The downstream flux 
in the upper layer is greater downstream of the adjustment than upstream in both 
cases. However, for the standard coflowing case (which has a positive flux in the upper 
layer) this means that the flux (and thus the velocity) in the upper layer increases in 
magnitude whereas for the gravity current case (which has a negative return flux in the 
upper layer) this means that the flux (and thus the velocity) of the upper layer decreases 
in magnitude. For flows where the gravity current is completely blocked the upper layer 
downstream of the adjustment is stationary. 

FIGURE 8. Contours of (a) the proportion of the incoming flux that continues over the obstacle, (b)  
the velocity of the reflected jump (divided by the velocity of the incoming gravity current), and ( c )  the 
ratio of the lower-layer depths either side of the jump, as functions of the obstacle height and the 
height of the incoming current relative to the total channel depth (2-layer model), using the Froude 
number predicted from equation (16a). A combination of bore and rarefaction is predicted in 
the region marked ‘Rare’. A comparison of these predictions with the experimental results is given 
in (d-f). 
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6. Summary and discussion 
The (partial) reflection of a gravity current from an obstacle has been examined by 

a thorough theoretical analysis, considering 1:-, 2- and 2;-layer flows. The rigid lid (2- 
layer) case has been considered in detail, and compared with experimental results. The 
analysis, based on shallow-water theory, gives a reasonable description of the main 
properties of the flow, provided an experimentally determined inflow condition (16a) 
for the incoming gravity current is used. The experimental results show that the Froude 
number for the incoming gravity current lies in the range approximately 0.6 to 1.0, with 
a lower lid giving lower Froude numbers. 

As expected, the proportion of the incoming flow that continues over the obstacle 
reduces as the height of the obstacle increases, and increases as the inflow Froude 
number (and thus the depth of the upper layer) increases. When the upper layer is 
thinner then the return flow in it must be faster (since there is no net flow). The height 
of the reflected bore is shallower and its speed faster and there is less flow over the 
obstacle. Thus the presence of an upper boundary, especially if it is only a few times 
the height of the gravity current, has a significant effect on the flow. 

The theory assumes that the reflected flow is a simple jump, though a combination 
of jump and rarefaction is predicted for some cases. The effect of this different type of 
adjustment has not been analysed in detail, but it is unlikely to have a large effect on 
the amount of flow continuing over the obstacle. However, a more detailed 
investigation of cases where this more complicated adjustment is predicted would be 
useful. 

As was mentioned in the introduction, a low ‘lid’ (with a corresponding return flow) 
is a common precursor to sea-breeze formation. Frontogenesis is also enhanced if there 
is a weak offshore ambient wind, which tends to produce a sharper front. The theory 
presented here could be extended to the case where there is a net flow (provided the flow 
is not so strong as to alter the basic flow pattern) by altering the inflow condition ((1 a) 
or (16a)) and the no-net-flow conditions (1 b) and (1 1). 

There are several aspects of the flow that are not described by shallow-water theory 
that are worthy of further investigation. Some of the gravity current fluid is observed 
to continue up the obstacle or slope to approximately twice the height of the steady- 
state return flow, and this splash is accompanied by more mixing than occurred in the 
steady flow. The behaviour of the finite-volume splash has implications for the design 
of barriers intended to contain accidental dense gas releases. The flow decelerates once 
it reaches the obstacle and the returning bore accelerates up to its final speed: there is 
a ‘virtual reflection point’ from which the current appears to reflect (based on the 
steady incoming and outgoing velocities away from the obstacle). The reflected jump 
is not a turbulent breaking bore but an undular bore with a series of waves. These have 
been observed in fresh water outflows (Thorpe ef al. 1983) and require better 
characterization in terms of wavelengths and the number of waves, etc. These questions 
and the effects of varying the slope angle (including angles greater than 90°, i.e. a ceiling 
sloping to the floor) will be the subject of future studies. 
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